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7

Internal Sorting

We sort many things in our everyday lives: A handful of cards when playing Bridge;
bills and other piles of paper; jars of spices; and so on. And we have many intuitive
strategies that we can use to do the sorting, depending on how many objects we
have to sort and how hard they are to move around. Sorting is also one of the most
frequently performed computing tasks. We might sort the records in a database
so that we can search the collection efficiently. We might sort the records by zip
code so that we can print and mail them more cheaply. We might use sorting as an
intrinsic part of an algorithm to solve some other problem, such as when computing
the minimum-cost spanning tree (see Section 11.5).

Because sorting is so important, naturally it has been studied intensively and
many algorithms have been devised. Some of these algorithms are straightforward
adaptations of schemes we use in everyday life. Others are totally alien to how hu-
mans do things, having been invented to sort thousands or even millions of records
stored on the computer. After years of study, there are still unsolved problems
related to sorting. New algorithms are still being developed and refined for special-
purpose applications.

While introducing this central problem in computer science, this chapter has
a secondary purpose of illustrating issues in algorithm design and analysis. For
example, this collection of sorting algorithms shows multiple approaches to us-
ing divide-and-conquer. In particular, there are multiple ways to do the dividing:
Mergesort divides a list in half; Quicksort divides a list into big values and small
values; and Radix Sort divides the problem by working on one digit of the key at
a time. Sorting algorithms can also illustrate a wide variety of analysis techniques.
We’ll find that it is possible for an algorithm to have an average case whose growth
rate is significantly smaller than its worse case (Quicksort). We’ll see how it is
possible to speed up sorting algorithms (both Shellsort and Quicksort) by taking
advantage of the best case behavior of another algorithm (Insertion sort). We’ll see
several examples of how we can tune an algorithm for better performance. We’ll
see that special case behavior by some algorithms makes them a good solution for
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224 Chap. 7 Internal Sorting

special niche applications (Heapsort). Sorting provides an example of a significant
technique for analyzing the lower bound for a problem. Sorting will also be used
to motivate the introduction to file processing presented in Chapter 8.

The present chapter covers several standard algorithms appropriate for sorting
a collection of records that fit in the computer’s main memory. It begins with a dis-
cussion of three simple, but relatively slow, algorithms requiring Θ(n2) time in the
average and worst cases. Several algorithms with considerably better performance
are then presented, some with Θ(n log n) worst-case running time. The final sort-
ing method presented requires only Θ(n) worst-case time under special conditions.
The chapter concludes with a proof that sorting in general requires Ω(n log n) time
in the worst case.

7.1 Sorting Terminology and Notation

Except where noted otherwise, input to the sorting algorithms presented in this
chapter is a collection of records stored in an array. Records are compared to
one another by requiring that their type extend the Comparable class. This will
ensure that the class implements the compareTo method, which returns a value
less than zero, equal to zero, or greater than zero depending on its relationship to
the record being compared to. The compareTo method is defined to extract the
appropriate key field from the record. We also assume that for every record type
there is a swap function that can interchange the contents of two records in the
array.

Given a set of records r1, r2, ..., rn with key values k1, k2, ..., kn, the Sorting
Problem is to arrange the records into any order s such that records rs1 , rs2 , ..., rsn
have keys obeying the property ks1 ≤ ks2 ≤ ... ≤ ksn . In other words, the sorting
problem is to arrange a set of records so that the values of their key fields are in
non-decreasing order.

As defined, the Sorting Problem allows input with two or more records that have
the same key value. Certain applications require that input not contain duplicate
key values. The sorting algorithms presented in this chapter and in Chapter 8 can
handle duplicate key values unless noted otherwise.

When duplicate key values are allowed, there might be an implicit ordering
to the duplicates, typically based on their order of occurrence within the input. It
might be desirable to maintain this initial ordering among duplicates. A sorting
algorithm is said to be stable if it does not change the relative ordering of records
with identical key values. Many, but not all, of the sorting algorithms presented in
this chapter are stable, or can be made stable with minor changes.

When comparing two sorting algorithms, the most straightforward approach
would seem to be simply program both and measure their running times. An ex-
ample of such timings is presented in Figure 7.20. However, such a comparison
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can be misleading because the running time for many sorting algorithms depends
on specifics of the input values. In particular, the number of records, the size of
the keys and the records, the allowable range of the key values, and the amount by
which the input records are “out of order” can all greatly affect the relative running
times for sorting algorithms.

When analyzing sorting algorithms, it is traditional to measure the number of
comparisons made between keys. This measure is usually closely related to the
running time for the algorithm and has the advantage of being machine and data-
type independent. However, in some cases records might be so large that their
physical movement might take a significant fraction of the total running time. If so,
it might be appropriate to measure the number of swap operations performed by the
algorithm. In most applications we can assume that all records and keys are of fixed
length, and that a single comparison or a single swap operation requires a constant
amount of time regardless of which keys are involved. Some special situations
“change the rules” for comparing sorting algorithms. For example, an application
with records or keys having widely varying length (such as sorting a sequence of
variable length strings) will benefit from a special-purpose sorting technique. Some
applications require that a small number of records be sorted, but that the sort be
performed frequently. An example would be an application that repeatedly sorts
groups of five numbers. In such cases, the constants in the runtime equations that
are usually ignored in an asymptotic analysis now become crucial. Finally, some
situations require that a sorting algorithm use as little memory as possible. We will
note which sorting algorithms require significant extra memory beyond the input
array.

7.2 Three Θ(n2) Sorting Algorithms

This section presents three simple sorting algorithms. While easy to understand
and implement, we will soon see that they are unacceptably slow when there are
many records to sort. Nonetheless, there are situations where one of these simple
algorithms is the best tool for the job.

7.2.1 Insertion Sort

Imagine that you have a stack of phone bills from the past two years and that you
wish to organize them by date. A fairly natural way to do this might be to look at
the first two bills and put them in order. Then take the third bill and put it into the
right order with respect to the first two, and so on. As you take each bill, you would
add it to the sorted pile that you have already made. This naturally intuitive process
is the inspiration for our first sorting algorithm, called Insertion Sort. Insertion
Sort iterates through a list of records. Each record is inserted in turn at the correct
position within a sorted list composed of those records already processed. The
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Figure 7.1 An illustration of Insertion Sort. Each column shows the array after
the iteration with the indicated value of i in the outer for loop. Values above
the line in each column have been sorted. Arrows indicate the upward motions of
records through the array.

following is a Java implementation. The input is an array of n records stored in
array A.

static <E extends Comparable<? super E>>
void inssort(E[] A) {

for (int i=1; i<A.length; i++) // Insert i’th record
for (int j=i; (j>0) && (A[j].compareTo(A[j-1])<0); j--)

DSutil.swap(A, j, j-1);
}

Consider the case where inssort is processing the ith record, which has key
value X. The record is moved upward in the array as long as X is less than the
key value immediately above it. As soon as a key value less than or equal to X is
encountered, inssort is done with that record because all records above it in the
array must have smaller keys. Figure 7.1 illustrates how Insertion Sort works.

The body of inssort is made up of two nested for loops. The outer for
loop is executed n − 1 times. The inner for loop is harder to analyze because
the number of times it executes depends on how many keys in positions 1 to i − 1
have a value less than that of the key in position i. In the worst case, each record
must make its way to the top of the array. This would occur if the keys are initially
arranged from highest to lowest, in the reverse of sorted order. In this case, the
number of comparisons will be one the first time through the for loop, two the
second time, and so on. Thus, the total number of comparisons will be

n∑
i=2

i ≈ n2/2 = Θ(n2).

In contrast, consider the best-case cost. This occurs when the keys begin in
sorted order from lowest to highest. In this case, every pass through the inner
for loop will fail immediately, and no values will be moved. The total number
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of comparisons will be n − 1, which is the number of times the outer for loop
executes. Thus, the cost for Insertion Sort in the best case is Θ(n).

While the best case is significantly faster than the worst case, the worst case
is usually a more reliable indication of the “typical” running time. However, there
are situations where we can expect the input to be in sorted or nearly sorted order.
One example is when an already sorted list is slightly disordered by a small number
of additions to the list; restoring sorted order using Insertion Sort might be a good
idea if we know that the disordering is slight. Examples of algorithms that take ad-
vantage of Insertion Sort’s near-best-case running time are the Shellsort algorithm
of Section 7.3 and the Quicksort algorithm of Section 7.5.

What is the average-case cost of Insertion Sort? When record i is processed,
the number of times through the inner for loop depends on how far “out of order”
the record is. In particular, the inner for loop is executed once for each key greater
than the key of record i that appears in array positions 0 through i−1. For example,
in the leftmost column of Figure 7.1 the value 15 is preceded by five values greater
than 15. Each such occurrence is called an inversion. The number of inversions
(i.e., the number of values greater than a given value that occur prior to it in the
array) will determine the number of comparisons and swaps that must take place.
We need to determine what the average number of inversions will be for the record
in position i. We expect on average that half of the keys in the first i − 1 array
positions will have a value greater than that of the key at position i. Thus, the
average case should be about half the cost of the worst case, or around n2/4, which
is still Θ(n2). So, the average case is no better than the worst case in asymptotic
complexity.

Counting comparisons or swaps yields similar results. Each time through the
inner for loop yields both a comparison and a swap, except the last (i.e., the
comparison that fails the inner for loop’s test), which has no swap. Thus, the
number of swaps for the entire sort operation is n − 1 less than the number of
comparisons. This is 0 in the best case, and Θ(n2) in the average and worst cases.

7.2.2 Bubble Sort

Our next sorting algorithm is called Bubble Sort. Bubble Sort is often taught to
novice programmers in introductory computer science courses. This is unfortunate,
because Bubble Sort has no redeeming features whatsoever. It is a relatively slow
sort, it is no easier to understand than Insertion Sort, it does not correspond to any
intuitive counterpart in “everyday” use, and it has a poor best-case running time.
However, Bubble Sort can serve as the inspiration for a better sorting algorithm that
will be presented in Section 7.2.3.

Bubble Sort consists of a simple double for loop. The first iteration of the
inner for loop moves through the record array from bottom to top, comparing
adjacent keys. If the lower-indexed key’s value is greater than its higher-indexed
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Figure 7.2 An illustration of Bubble Sort. Each column shows the array after
the iteration with the indicated value of i in the outer for loop. Values above the
line in each column have been sorted. Arrows indicate the swaps that take place
during a given iteration.

neighbor, then the two values are swapped. Once the smallest value is encountered,
this process will cause it to “bubble” up to the top of the array. The second pass
through the array repeats this process. However, because we know that the smallest
value reached the top of the array on the first pass, there is no need to compare
the top two elements on the second pass. Likewise, each succeeding pass through
the array compares adjacent elements, looking at one less value than the preceding
pass. Figure 7.2 illustrates Bubble Sort. A Java implementation is as follows:

static <E extends Comparable<? super E>>
void bubblesort(E[] A) {

for (int i=0; i<A.length-1; i++) // Bubble up i’th record
for (int j=A.length-1; j>i; j--)

if ((A[j].compareTo(A[j-1]) < 0))
DSutil.swap(A, j, j-1);

}

Determining Bubble Sort’s number of comparisons is easy. Regardless of the
arrangement of the values in the array, the number of comparisons made by the
inner for loop is always i, leading to a total cost of

n∑
i=1

i ≈ n2/2 = Θ(n2).

Bubble Sort’s running time is roughly the same in the best, average, and worst
cases.

The number of swaps required depends on how often a value is less than the
one immediately preceding it in the array. We can expect this to occur for about
half the comparisons in the average case, leading to Θ(n2) for the expected number
of swaps. The actual number of swaps performed by Bubble Sort will be identical
to that performed by Insertion Sort.
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Figure 7.3 An example of Selection Sort. Each column shows the array after the
iteration with the indicated value of i in the outer for loop. Numbers above the
line in each column have been sorted and are in their final positions.

7.2.3 Selection Sort

Consider again the problem of sorting a pile of phone bills for the past year. An-
other intuitive approach might be to look through the pile until you find the bill for
January, and pull that out. Then look through the remaining pile until you find the
bill for February, and add that behind January. Proceed through the ever-shrinking
pile of bills to select the next one in order until you are done. This is the inspiration
for our last Θ(n2) sort, called Selection Sort. The ith pass of Selection Sort “se-
lects” the ith smallest key in the array, placing that record into position i. In other
words, Selection Sort first finds the smallest key in an unsorted list, then the second
smallest, and so on. Its unique feature is that there are few record swaps. To find
the next smallest key value requires searching through the entire unsorted portion
of the array, but only one swap is required to put the record in place. Thus, the total
number of swaps required will be n− 1 (we get the last record in place “for free”).

Figure 7.3 illustrates Selection Sort. Below is a Java implementation.

static <E extends Comparable<? super E>>
void selectsort(E[] A) {

for (int i=0; i<A.length-1; i++) { // Select i’th record
int lowindex = i; // Remember its index
for (int j=A.length-1; j>i; j--) // Find the least value

if (A[j].compareTo(A[lowindex]) < 0)
lowindex = j; // Put it in place

DSutil.swap(A, i, lowindex);
}

}

Selection Sort (as written here) is essentially a Bubble Sort, except that rather
than repeatedly swapping adjacent values to get the next smallest record into place,
we instead remember the position of the element to be selected and do one swap
at the end. Thus, the number of comparisons is still Θ(n2), but the number of
swaps is much less than that required by bubble sort. Selection Sort is particularly
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Figure 7.4 An example of swapping pointers to records. (a) A series of four
records. The record with key value 42 comes before the record with key value 5.
(b) The four records after the top two pointers have been swapped. Now the record
with key value 5 comes before the record with key value 42.

advantageous when the cost to do a swap is high, for example, when the elements
are long strings or other large records. Selection Sort is more efficient than Bubble
Sort (by a constant factor) in most other situations as well.

There is another approach to keeping the cost of swapping records low that
can be used by any sorting algorithm even when the records are large. This is
to have each element of the array store a pointer to a record rather than store the
record itself. In this implementation, a swap operation need only exchange the
pointer values; the records themselves do not move. This technique is illustrated
by Figure 7.4. Additional space is needed to store the pointers, but the return is a
faster swap operation.

7.2.4 The Cost of Exchange Sorting

Figure 7.5 summarizes the cost of Insertion, Bubble, and Selection Sort in terms of
their required number of comparisons and swaps1 in the best, average, and worst
cases. The running time for each of these sorts is Θ(n2) in the average and worst
cases.

The remaining sorting algorithms presented in this chapter are significantly bet-
ter than these three under typical conditions. But before continuing on, it is instruc-
tive to investigate what makes these three sorts so slow. The crucial bottleneck
is that only adjacent records are compared. Thus, comparisons and moves (in all
but Selection Sort) are by single steps. Swapping adjacent records is called an ex-
change. Thus, these sorts are sometimes referred to as exchange sorts. The cost
of any exchange sort can be at best the total number of steps that the records in the

1There is a slight anomaly with Selection Sort. The supposed advantage for Selection Sort is its
low number of swaps required, yet Selection Sort’s best-case number of swaps is worse than that for
Insertion Sort or Bubble Sort. This is because the implementation given for Selection Sort does not
avoid a swap in the case where record i is already in position i. One could put in a test to avoid
swapping in this situation. But it usually takes more time to do the tests than would be saved by
avoiding such swaps.
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Insertion Bubble Selection
Comparisons:

Best Case Θ(n) Θ(n2) Θ(n2)
Average Case Θ(n2) Θ(n2) Θ(n2)

Worst Case Θ(n2) Θ(n2) Θ(n2)

Swaps:
Best Case 0 0 Θ(n)

Average Case Θ(n2) Θ(n2) Θ(n)
Worst Case Θ(n2) Θ(n2) Θ(n)

Figure 7.5 A comparison of the asymptotic complexities for three simple sorting
algorithms.

array must move to reach their “correct” location (i.e., the number of inversions for
each record).

What is the average number of inversions? Consider a list L containing n val-
ues. Define LR to be L in reverse. L has n(n−1)/2 distinct pairs of values, each of
which could potentially be an inversion. Each such pair must either be an inversion
in L or in LR. Thus, the total number of inversions in L and LR together is exactly
n(n−1)/2 for an average of n(n−1)/4 per list. We therefore know with certainty
that any sorting algorithm which limits comparisons to adjacent items will cost at
least n(n− 1)/4 = Ω(n2) in the average case.

7.3 Shellsort

The next sorting algorithm that we consider is called Shellsort, named after its
inventor, D.L. Shell. It is also sometimes called the diminishing increment sort.
Unlike Insertion and Selection Sort, there is no real life intuitive equivalent to Shell-
sort. Unlike the exchange sorts, Shellsort makes comparisons and swaps between
non-adjacent elements. Shellsort also exploits the best-case performance of Inser-
tion Sort. Shellsort’s strategy is to make the list “mostly sorted” so that a final
Insertion Sort can finish the job. When properly implemented, Shellsort will give
substantially better performance than Θ(n2) in the worst case.

Shellsort uses a process that forms the basis for many of the sorts presented
in the following sections: Break the list into sublists, sort them, then recombine
the sublists. Shellsort breaks the array of elements into “virtual” sublists. Each
sublist is sorted using an Insertion Sort. Another group of sublists is then chosen
and sorted, and so on.

During each iteration, Shellsort breaks the list into disjoint sublists so that each
element in a sublist is a fixed number of positions apart. For example, let us as-
sume for convenience that n, the number of values to be sorted, is a power of two.
One possible implementation of Shellsort will begin by breaking the list into n/2
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Figure 7.6 An example of Shellsort. Sixteen items are sorted in four passes.
The first pass sorts 8 sublists of size 2 and increment 8. The second pass sorts
4 sublists of size 4 and increment 4. The third pass sorts 2 sublists of size 8 and
increment 2. The fourth pass sorts 1 list of size 16 and increment 1 (a regular
Insertion Sort).

sublists of 2 elements each, where the array index of the 2 elements in each sublist
differs by n/2. If there are 16 elements in the array indexed from 0 to 15, there
would initially be 8 sublists of 2 elements each. The first sublist would be the ele-
ments in positions 0 and 8, the second in positions 1 and 9, and so on. Each list of
two elements is sorted using Insertion Sort.

The second pass of Shellsort looks at fewer, bigger lists. For our example the
second pass would have n/4 lists of size 4, with the elements in the list being n/4
positions apart. Thus, the second pass would have as its first sublist the 4 elements
in positions 0, 4, 8, and 12; the second sublist would have elements in positions 1,
5, 9, and 13; and so on. Each sublist of four elements would also be sorted using
an Insertion Sort.

The third pass would be made on two lists, one consisting of the odd positions
and the other consisting of the even positions.

The culminating pass in this example would be a “normal” Insertion Sort of all
elements. Figure 7.6 illustrates the process for an array of 16 values where the sizes
of the increments (the distances between elements on the successive passes) are 8,
4, 2, and 1. Figure 7.7 presents a Java implementation for Shellsort.

Shellsort will work correctly regardless of the size of the increments, provided
that the final pass has increment 1 (i.e., provided the final pass is a regular Insertion
Sort). If Shellsort will always conclude with a regular Insertion Sort, then how
can it be any improvement on Insertion Sort? The expectation is that each of the
(relatively cheap) sublist sorts will make the list “more sorted” than it was before.
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static <E extends Comparable<? super E>>
void shellsort(E[] A) {

for (int i=A.length/2; i>2; i/=2) // For each increment
for (int j=0; j<i; j++) // Sort each sublist

inssort2(A, j, i);
inssort2(A, 0, 1); // Could call regular inssort here

}

/** Modified Insertion Sort for varying increments */
static <E extends Comparable<? super E>>
void inssort2(E[] A, int start, int incr) {

for (int i=start+incr; i<A.length; i+=incr)
for (int j=i; (j>=incr)&&

(A[j].compareTo(A[j-incr])<0); j-=incr)
DSutil.swap(A, j, j-incr);

}

Figure 7.7 An implementation for Shell Sort.

It is not necessarily the case that this will be true, but it is almost always true in
practice. When the final Insertion Sort is conducted, the list should be “almost
sorted,” yielding a relatively cheap final Insertion Sort pass.

Some choices for increments will make Shellsort run more efficiently than oth-
ers. In particular, the choice of increments described above (2k, 2k−1, ..., 2, 1)
turns out to be relatively inefficient. A better choice is the following series based
on division by three: (..., 121, 40, 13, 4, 1).

The analysis of Shellsort is difficult, so we must accept without proof that
the average-case performance of Shellsort (for “divisions by three” increments)
is O(n1.5). Other choices for the increment series can reduce this upper bound
somewhat. Thus, Shellsort is substantially better than Insertion Sort, or any of the
Θ(n2) sorts presented in Section 7.2. In fact, Shellsort is not terrible when com-
pared with the asymptotically better sorts to be presented whenever n is of medium
size (thought is tends to be a little slower than these other algorithms when they
are well implemented). Shellsort illustrates how we can sometimes exploit the spe-
cial properties of an algorithm (in this case Insertion Sort) even if in general that
algorithm is unacceptably slow.

7.4 Mergesort

A natural approach to problem solving is divide and conquer. In terms of sorting,
we might consider breaking the list to be sorted into pieces, process the pieces, and
then put them back together somehow. A simple way to do this would be to split
the list in half, sort the halves, and then merge the sorted halves together. This is
the idea behind Mergesort.
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Figure 7.8 An illustration of Mergesort. The first row shows eight numbers that
are to be sorted. Mergesort will recursively subdivide the list into sublists of one
element each, then recombine the sublists. The second row shows the four sublists
of size 2 created by the first merging pass. The third row shows the two sublists
of size 4 created by the next merging pass on the sublists of row 2. The last row
shows the final sorted list created by merging the two sublists of row 3.

Mergesort is one of the simplest sorting algorithms conceptually, and has good
performance both in the asymptotic sense and in empirical running time. Surpris-
ingly, even though it is based on a simple concept, it is relatively difficult to im-
plement in practice. Figure 7.8 illustrates Mergesort. A pseudocode sketch of
Mergesort is as follows:

List mergesort(List inlist) {
if (inlist.length() <= 1) return inlist;;
List L1 = half of the items from inlist;
List L2 = other half of the items from inlist;
return merge(mergesort(L1), mergesort(L2));

}

Before discussing how to implement Mergesort, we will first examine the merge
function. Merging two sorted sublists is quite simple. Function merge examines
the first element of each sublist and picks the smaller value as the smallest element
overall. This smaller value is removed from its sublist and placed into the output
list. Merging continues in this way, comparing the front elements of the sublists and
continually appending the smaller to the output list until no more input elements
remain.

Implementing Mergesort presents a number of technical difficulties. The first
decision is how to represent the lists. Mergesort lends itself well to sorting a singly
linked list because merging does not require random access to the list elements.
Thus, Mergesort is the method of choice when the input is in the form of a linked
list. Implementing merge for linked lists is straightforward, because we need only
remove items from the front of the input lists and append items to the output list.
Breaking the input list into two equal halves presents some difficulty. Ideally we
would just break the lists into front and back halves. However, even if we know the
length of the list in advance, it would still be necessary to traverse halfway down
the linked list to reach the beginning of the second half. A simpler method, which
does not rely on knowing the length of the list in advance, assigns elements of the
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static <E extends Comparable<? super E>>
void mergesort(E[] A, E[] temp, int l, int r) {

int mid = (l+r)/2; // Select midpoint
if (l == r) return; // List has one element
mergesort(A, temp, l, mid); // Mergesort first half
mergesort(A, temp, mid+1, r); // Mergesort second half
for (int i=l; i<=r; i++) // Copy subarray to temp

temp[i] = A[i];
// Do the merge operation back to A
int i1 = l; int i2 = mid + 1;
for (int curr=l; curr<=r; curr++) {

if (i1 == mid+1) // Left sublist exhausted
A[curr] = temp[i2++];

else if (i2 > r) // Right sublist exhausted
A[curr] = temp[i1++];

else if (temp[i1].compareTo(temp[i2])<0) // Get smaller
A[curr] = temp[i1++];

else A[curr] = temp[i2++];
}

}
Figure 7.9 Standard implementation for Mergesort.

input list alternating between the two sublists. The first element is assigned to the
first sublist, the second element to the second sublist, the third to first sublist, the
fourth to the second sublist, and so on. This requires one complete pass through
the input list to build the sublists.

When the input to Mergesort is an array, splitting input into two subarrays is
easy if we know the array bounds. Merging is also easy if we merge the subarrays
into a second array. Note that this approach requires twice the amount of space
as any of the sorting methods presented so far, which is a serious disadvantage for
Mergesort. It is possible to merge the subarrays without using a second array, but
this is extremely difficult to do efficiently and is not really practical. Merging the
two subarrays into a second array, while simple to implement, presents another dif-
ficulty. The merge process ends with the sorted list in the auxiliary array. Consider
how the recursive nature of Mergesort breaks the original array into subarrays, as
shown in Figure 7.8. Mergesort is recursively called until subarrays of size 1 have
been created, requiring log n levels of recursion. These subarrays are merged into
subarrays of size 2, which are in turn merged into subarrays of size 4, and so on.
We need to avoid having each merge operation require a new array. With some
difficulty, an algorithm can be devised that alternates between two arrays. A much
simpler approach is to copy the sorted sublists to the auxiliary array first, and then
merge them back to the original array. Figure 7.9 shows a complete implementation
for mergesort following this approach.

An optimized Mergesort implementation is shown in Figure 7.10. It reverses
the order of the second subarray during the initial copy. Now the current positions
of the two subarrays work inwards from the ends, allowing the end of each subarray
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static <E extends Comparable<? super E>>
void mergesort(E[] A, E[] temp, int l, int r) {

int i, j, k, mid = (l+r)/2; // Select the midpoint
if (l == r) return; // List has one element
if ((mid-l) >= THRESHOLD) mergesort(A, temp, l, mid);
else inssort(A, l, mid-l+1);
if ((r-mid) > THRESHOLD) mergesort(A, temp, mid+1, r);
else inssort(A, mid+1, r-mid);
// Do the merge operation. First, copy 2 halves to temp.
for (i=l; i<=mid; i++) temp[i] = A[i];
for (j=1; j<=r-mid; j++) temp[r-j+1] = A[j+mid];
// Merge sublists back to array
for (i=l,j=r,k=l; k<=r; k++)

if (temp[i].compareTo(temp[j])<0) A[k] = temp[i++];
else A[k] = temp[j--];

}

Figure 7.10 Optimized implementation for Mergesort.

to act as a sentinel for the other. Unlike the previous implementation, no test is
needed to check for when one of the two subarrays becomes empty. This version
also uses Insertion Sort to sort small subarrays.

Analysis of Mergesort is straightforward, despite the fact that it is a recursive
algorithm. The merging part takes time Θ(i) where i is the total length of the two
subarrays being merged. The array to be sorted is repeatedly split in half until
subarrays of size 1 are reached, at which time they are merged to be of size 2, these
merged to subarrays of size 4, and so on as shown in Figure 7.8. Thus, the depth
of the recursion is log n for n elements (assume for simplicity that n is a power
of two). The first level of recursion can be thought of as working on one array of
size n, the next level working on two arrays of size n/2, the next on four arrays
of size n/4, and so on. The bottom of the recursion has n arrays of size 1. Thus,
n arrays of size 1 are merged (requiring Θ(n) total steps), n/2 arrays of size 2
(again requiring Θ(n) total steps), n/4 arrays of size 4, and so on. At each of the
log n levels of recursion, Θ(n) work is done, for a total cost of Θ(n log n). This
cost is unaffected by the relative order of the values being sorted, thus this analysis
holds for the best, average, and worst cases.

7.5 Quicksort

While Mergesort uses the most obvious form of divide and conquer (split the list in
half then sort the halves), it is not the only way that we can break down the sorting
problem. And we saw that doing the merge step for Mergesort when using an array
implementation is not so easy. So perhaps a different divide and conquer strategy
might turn out to be more efficient?
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Quicksort is aptly named because, when properly implemented, it is the fastest
known general-purpose in-memory sorting algorithm in the average case. It does
not require the extra array needed by Mergesort, so it is space efficient as well.
Quicksort is widely used, and is typically the algorithm implemented in a library
sort routine such as the UNIX qsort function. Interestingly, Quicksort is ham-
pered by exceedingly poor worst-case performance, thus making it inappropriate
for certain applications.

Before we get to Quicksort, consider for a moment the practicality of using a
Binary Search Tree for sorting. You could insert all of the values to be sorted into
the BST one by one, then traverse the completed tree using an inorder traversal.
The output would form a sorted list. This approach has a number of drawbacks,
including the extra space required by BST pointers and the amount of time required
to insert nodes into the tree. However, this method introduces some interesting
ideas. First, the root of the BST (i.e., the first node inserted) splits the list into two
sublists: The left subtree contains those values in the list less than the root value
while the right subtree contains those values in the list greater than or equal to the
root value. Thus, the BST implicitly implements a “divide and conquer” approach
to sorting the left and right subtrees. Quicksort implements this concept in a much
more efficient way.

Quicksort first selects a value called the pivot. (This is conceptually like the
root node’s value in the BST.) Assume that the input array contains k values less
than the pivot. The records are then rearranged in such a way that the k values
less than the pivot are placed in the first, or leftmost, k positions in the array, and
the values greater than or equal to the pivot are placed in the last, or rightmost,
n−k positions. This is called a partition of the array. The values placed in a given
partition need not (and typically will not) be sorted with respect to each other. All
that is required is that all values end up in the correct partition. The pivot value itself
is placed in position k. Quicksort then proceeds to sort the resulting subarrays now
on either side of the pivot, one of size k and the other of size n − k − 1. How are
these values sorted? Because Quicksort is such a good algorithm, using Quicksort
on the subarrays would be appropriate.

Unlike some of the sorts that we have seen earlier in this chapter, Quicksort
might not seem very “natural” in that it is not an approach that a person is likely to
use to sort real objects. But it should not be too surprising that a really efficient sort
for huge numbers of abstract objects on a computer would be rather different from
our experiences with sorting a relatively few physical objects.

The Java code for Quicksort is shown in Figure 7.11. Parameters i and j define
the left and right indices, respectively, for the subarray being sorted. The initial call
to Quicksort would be qsort(array, 0, n-1).

Function partition will move records to the appropriate partition and then
return k, the first position in the right partition. Note that the pivot value is initially
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static <E extends Comparable<? super E>>
void qsort(E[] A, int i, int j) { // Quicksort

int pivotindex = findpivot(A, i, j); // Pick a pivot
DSutil.swap(A, pivotindex, j); // Stick pivot at end
// k will be the first position in the right subarray
int k = partition(A, i-1, j, A[j]);
DSutil.swap(A, k, j); // Put pivot in place
if ((k-i) > 1) qsort(A, i, k-1); // Sort left partition
if ((j-k) > 1) qsort(A, k+1, j); // Sort right partition

}

Figure 7.11 Implementation for Quicksort.

placed at the end of the array (position j). Thus, partition must not affect the
value of array position j. After partitioning, the pivot value is placed in position k,
which is its correct position in the final, sorted array. By doing so, we guarantee
that at least one value (the pivot) will not be processed in the recursive calls to
qsort. Even if a bad pivot is selected, yielding a completely empty partition to
one side of the pivot, the larger partition will contain at most n− 1 elements.

Selecting a pivot can be done in many ways. The simplest is to use the first
key. However, if the input is sorted or reverse sorted, this will produce a poor
partitioning with all values to one side of the pivot. It is better to pick a value
at random, thereby reducing the chance of a bad input order affecting the sort.
Unfortunately, using a random number generator is relatively expensive, and we
can do nearly as well by selecting the middle position in the array. Here is a simple
findpivot function:

static <E extends Comparable<? super E>>
int findpivot(E[] A, int i, int j)

{ return (i+j)/2; }

We now turn to function partition. If we knew in advance how many keys
are less than the pivot, partition could simply copy elements with key values
less than the pivot to the low end of the array, and elements with larger keys to
the high end. Because we do not know in advance how many keys are less than
the pivot, we use a clever algorithm that moves indices inwards from the ends of
the subarray, swapping values as necessary until the two indices meet. Figure 7.12
shows a Java implementation for the partition step.

Figure 7.13 illustrates partition. Initially, variables l and r are immedi-
ately outside the actual bounds of the subarray being partitioned. Each pass through
the outer do loop moves the counters l and r inwards, until eventually they meet.
Note that at each iteration of the inner while loops, the bounds are moved prior
to checking against the pivot value. This ensures that progress is made by each
while loop, even when the two values swapped on the last iteration of the do
loop were equal to the pivot. Also note the check that r > l in the second while
loop. This ensures that r does not run off the low end of the partition in the case
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static <E extends Comparable<? super E>>
int partition(E[] A, int l, int r, E pivot) {

do { // Move bounds inward until they meet
while (A[++l].compareTo(pivot)<0);
while ((r!=0) && (A[--r].compareTo(pivot)>0));
DSutil.swap(A, l, r); // Swap out-of-place values

} while (l < r); // Stop when they cross
DSutil.swap(A, l, r); // Reverse last, wasted swap
return l; // Return first position in right partition

}

Figure 7.12 The Quicksort partition implementation.
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Figure 7.13 The Quicksort partition step. The first row shows the initial po-
sitions for a collection of ten key values. The pivot value is 60, which has been
swapped to the end of the array. The do loop makes three iterations, each time
moving counters l and r inwards until they meet in the third pass. In the end,
the left partition contains four values and the right partition contains six values.
Function qsort will place the pivot value into position 4.

where the pivot is the least value in that partition. Function partition returns
the first index of the right partition so that the subarray bound for the recursive
calls to qsort can be determined. Figure 7.14 illustrates the complete Quicksort
algorithm.

To analyze Quicksort, we first analyze the findpivot and partition
functions operating on a subarray of length k. Clearly, findpivot takes con-
stant time. Function partition contains a do loop with two nested while
loops. The total cost of the partition operation is constrained by how far l and r
can move inwards. In particular, these two bounds variables together can move a
total of s steps for a subarray of length s. However, this does not directly tell us
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Figure 7.14 An illustration of Quicksort.

how much work is done by the nested while loops. The do loop as a whole is
guaranteed to move both l and r inward at least one position on each first pass.
Each while loop moves its variable at least once (except in the special case where
r is at the left edge of the array, but this can happen only once). Thus, we see that
the do loop can be executed at most s times, the total amount of work done moving
l and r is s, and each while loop can fail its test at most s times. The total work
for the entire partition function is therefore Θ(s).

Knowing the cost of findpivot and partition, we can determine the
cost of Quicksort. We begin with a worst-case analysis. The worst case will occur
when the pivot does a poor job of breaking the array, that is, when there are no
elements in one partition, and n − 1 elements in the other. In this case, the divide
and conquer strategy has done a poor job of dividing, so the conquer phase will
work on a subproblem only one less than the size of the original problem. If this
happens at each partition step, then the total cost of the algorithm will be

n∑
k=1

k = Θ(n2).

In the worst case, Quicksort is Θ(n2). This is terrible, no better than Bubble
Sort.2 When will this worst case occur? Only when each pivot yields a bad parti-
tioning of the array. If the pivot values are selected at random, then this is extremely
unlikely to happen. When selecting the middle position of the current subarray, it

2The worst insult that I can think of for a sorting algorithm.
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is still unlikely to happen. It does not take many good partitionings for Quicksort
to work fairly well.

Quicksort’s best case occurs when findpivot always breaks the array into
two equal halves. Quicksort repeatedly splits the array into smaller partitions, as
shown in Figure 7.14. In the best case, the result will be log n levels of partitions,
with the top level having one array of size n, the second level two arrays of size n/2,
the next with four arrays of size n/4, and so on. Thus, at each level, all partition
steps for that level do a total of n work, for an overall cost of n log n work when
Quicksort finds perfect pivots.

Quicksort’s average-case behavior falls somewhere between the extremes of
worst and best case. Average-case analysis considers the cost for all possible ar-
rangements of input, summing the costs and dividing by the number of cases. We
make one reasonable simplifying assumption: At each partition step, the pivot is
equally likely to end in any position in the (sorted) array. In other words, the pivot
is equally likely to break an array into partitions of sizes 0 and n−1, or 1 and n−2,
and so on.

Given this assumption, the average-case cost is computed from the following
equation:

T(n) = cn+
1

n

n−1∑
k=0

[T(k) + T(n− 1− k)], T(0) = T(1) = c.

This equation is in the form of a recurrence relation. Recurrence relations are
discussed in Chapters 2 and 14, and this one is solved in Section 14.2.4. This
equation says that there is one chance in n that the pivot breaks the array into
subarrays of size 0 and n − 1, one chance in n that the pivot breaks the array into
subarrays of size 1 and n− 2, and so on. The expression “T(k) + T(n− 1−k)” is
the cost for the two recursive calls to Quicksort on two arrays of size k and n−1−k.
The initial cn term is the cost of doing the findpivot and partition steps, for
some constant c. The closed-form solution to this recurrence relation is Θ(n log n).
Thus, Quicksort has average-case cost Θ(n log n).

This is an unusual situation that the average case cost and the worst case cost
have asymptotically different growth rates. Consider what “average case” actually
means. We compute an average cost for inputs of size n by summing up for every
possible input of size n the product of the running time cost of that input times the
probability that that input will occur. To simplify things, we assumed that every
permutation is equally likely to occur. Thus, finding the average means summing
up the cost for every permutation and dividing by the number of inputs (n!). We
know that some of these n! inputs cost O(n2). But the sum of all the permutation
costs has to be (n!)(O(n log n)). Given the extremely high cost of the worst inputs,
there must be very few of them. In fact, there cannot be a constant fraction of the
inputs with cost O(n2). Even, say, 1% of the inputs with cost O(n2) would lead to
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an average cost of O(n2). Thus, as n grows, the fraction of inputs with high cost
must be going toward a limit of zero. We can conclude that Quicksort will have
good behavior if we can avoid those very few bad input permutations.

The running time for Quicksort can be improved (by a constant factor), and
much study has gone into optimizing this algorithm. The most obvious place for
improvement is the findpivot function. Quicksort’s worst case arises when the
pivot does a poor job of splitting the array into equal size subarrays. If we are
willing to do more work searching for a better pivot, the effects of a bad pivot can
be decreased or even eliminated. One good choice is to use the “median of three”
algorithm, which uses as a pivot the middle of three randomly selected values.
Using a random number generator to choose the positions is relatively expensive,
so a common compromise is to look at the first, middle, and last positions of the
current subarray. However, our simple findpivot function that takes the middle
value as its pivot has the virtue of making it highly unlikely to get a bad input by
chance, and it is quite cheap to implement. This is in sharp contrast to selecting
the first or last element as the pivot, which would yield bad performance for many
permutations that are nearly sorted or nearly reverse sorted.

A significant improvement can be gained by recognizing that Quicksort is rel-
atively slow when n is small. This might not seem to be relevant if most of the
time we sort large arrays, nor should it matter how long Quicksort takes in the
rare instance when a small array is sorted because it will be fast anyway. But you
should notice that Quicksort itself sorts many, many small arrays! This happens as
a natural by-product of the divide and conquer approach.

A simple improvement might then be to replace Quicksort with a faster sort
for small numbers, say Insertion Sort or Selection Sort. However, there is an even
better — and still simpler — optimization. When Quicksort partitions are below
a certain size, do nothing! The values within that partition will be out of order.
However, we do know that all values in the array to the left of the partition are
smaller than all values in the partition. All values in the array to the right of the
partition are greater than all values in the partition. Thus, even if Quicksort only
gets the values to “nearly” the right locations, the array will be close to sorted. This
is an ideal situation in which to take advantage of the best-case performance of
Insertion Sort. The final step is a single call to Insertion Sort to process the entire
array, putting the elements into final sorted order. Empirical testing shows that
the subarrays should be left unordered whenever they get down to nine or fewer
elements.

The last speedup to be considered reduces the cost of making recursive calls.
Quicksort is inherently recursive, because each Quicksort operation must sort two
sublists. Thus, there is no simple way to turn Quicksort into an iterative algorithm.
However, Quicksort can be implemented using a stack to imitate recursion, as the
amount of information that must be stored is small. We need not store copies of a
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subarray, only the subarray bounds. Furthermore, the stack depth can be kept small
if care is taken on the order in which Quicksort’s recursive calls are executed. We
can also place the code for findpivot and partition inline to eliminate the
remaining function calls. Note however that by not processing sublists of size nine
or less as suggested above, about three quarters of the function calls will already
have been eliminated. Thus, eliminating the remaining function calls will yield
only a modest speedup.

7.6 Heapsort

Our discussion of Quicksort began by considering the practicality of using a binary
search tree for sorting. The BST requires more space than the other sorting meth-
ods and will be slower than Quicksort or Mergesort due to the relative expense of
inserting values into the tree. There is also the possibility that the BST might be un-
balanced, leading to a Θ(n2) worst-case running time. Subtree balance in the BST
is closely related to Quicksort’s partition step. Quicksort’s pivot serves roughly the
same purpose as the BST root value in that the left partition (subtree) stores val-
ues less than the pivot (root) value, while the right partition (subtree) stores values
greater than or equal to the pivot (root).

A good sorting algorithm can be devised based on a tree structure more suited
to the purpose. In particular, we would like the tree to be balanced, space efficient,
and fast. The algorithm should take advantage of the fact that sorting is a special-
purpose application in that all of the values to be stored are available at the start.
This means that we do not necessarily need to insert one value at a time into the
tree structure.

Heapsort is based on the heap data structure presented in Section 5.5. Heapsort
has all of the advantages just listed. The complete binary tree is balanced, its array
representation is space efficient, and we can load all values into the tree at once,
taking advantage of the efficient buildheap function. The asymptotic perfor-
mance of Heapsort is Θ(n log n) in the best, average, and worst cases. It is not as
fast as Quicksort in the average case (by a constant factor), but Heapsort has special
properties that will make it particularly useful when sorting data sets too large to fit
in main memory, as discussed in Chapter 8.

A sorting algorithm based on max-heaps is quite straightforward. First we use
the heap building algorithm of Section 5.5 to convert the array into max-heap order.
Then we repeatedly remove the maximum value from the heap, restoring the heap
property each time that we do so, until the heap is empty. Note that each time
we remove the maximum element from the heap, it is placed at the end of the
array. Assume the n elements are stored in array positions 0 through n − 1. After
removing the maximum value from the heap and readjusting, the maximum value
will now be placed in position n− 1 of the array. The heap is now considered to be
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of size n − 1. Removing the new maximum (root) value places the second largest
value in position n−2 of the array. After removing each of the remaining values in
turn, the array will be properly sorted from least to greatest. This is why Heapsort
uses a max-heap rather than a min-heap as might have been expected. Figure 7.15
illustrates Heapsort. The complete Java implementation is as follows:

static <E extends Comparable<? super E>>
void heapsort(E[] A) {

// The heap constructor invokes the buildheap method
MaxHeap<E> H = new MaxHeap<E>(A, A.length, A.length);
for (int i=0; i<A.length; i++) // Now sort

H.removemax(); // Removemax places max at end of heap
}

Because building the heap takes Θ(n) time (see Section 5.5), and because
n deletions of the maximum element each take Θ(log n) time, we see that the en-
tire Heapsort operation takes Θ(n log n) time in the worst, average, and best cases.
While typically slower than Quicksort by a constant factor, Heapsort has one spe-
cial advantage over the other sorts studied so far. Building the heap is relatively
cheap, requiring Θ(n) time. Removing the maximum element from the heap re-
quires Θ(log n) time. Thus, if we wish to find the k largest elements in an array,
we can do so in time Θ(n + k log n). If k is small, this is a substantial improve-
ment over the time required to find the k largest elements using one of the other
sorting methods described earlier (many of which would require sorting all of the
array first). One situation where we are able to take advantage of this concept is
in the implementation of Kruskal’s minimum-cost spanning tree (MST) algorithm
of Section 11.5.2. That algorithm requires that edges be visited in ascending order
(so, use a min-heap), but this process stops as soon as the MST is complete. Thus,
only a relatively small fraction of the edges need be sorted.

7.7 Binsort and Radix Sort

Imagine that for the past year, as you paid your various bills, you then simply piled
all the paperwork onto the top of a table somewhere. Now the year has ended and
its time to sort all of these papers by what the bill was for (phone, electricity, rent,
etc.) and date. A pretty natural approach is to make some space on the floor, and as
you go through the pile of papers, put the phone bills into one pile, the electric bills
into another pile, and so on. Once this initial assignment of bills to piles is done (in
one pass), you can sort each pile by date relatively quickly because they are each
fairly small. This is the basic idea behind a Binsort.

Section 3.9 presented the following code fragment to sort a permutation of the
numbers 0 through n− 1:

for (i=0; i<n; i++)
B[A[i]] = A[i];
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Figure 7.15 An illustration of Heapsort. The top row shows the values in their
original order. The second row shows the values after building the heap. The
third row shows the result of the first removefirst operation on key value 88.
Note that 88 is now at the end of the array. The fourth row shows the result of the
second removefirst operation on key value 85. The fifth row shows the result
of the third removefirst operation on key value 83. At this point, the last
three positions of the array hold the three greatest values in sorted order. Heapsort
continues in this manner until the entire array is sorted.
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static void binsort(Integer A[]) {
List<Integer>[] B = (LList<Integer>[])new LList[MaxKey];
Integer item;
for (int i=0; i<MaxKey; i++)

B[i] = new LList<Integer>();
for (int i=0; i<A.length; i++) B[A[i]].append(A[i]);
for (int i=0; i<MaxKey; i++)

for (B[i].moveToStart();
(item = B[i].getValue()) != null; B[i].next())

output(item);
}

Figure 7.16 The extended Binsort algorithm.

Here the key value is used to determine the position for a record in the final sorted
array. This is the most basic example of a Binsort, where key values are used
to assign records to bins. This algorithm is extremely efficient, taking Θ(n) time
regardless of the initial ordering of the keys. This is far better than the performance
of any sorting algorithm that we have seen so far. The only problem is that this
algorithm has limited use because it works only for a permutation of the numbers
from 0 to n− 1.

We can extend this simple Binsort algorithm to be more useful. Because Binsort
must perform direct computation on the key value (as opposed to just asking which
of two records comes first as our previous sorting algorithms did), we will assume
that the records use an integer key type.

The simplest extension is to allow for duplicate values among the keys. This
can be done by turning array slots into arbitrary-length bins by turning B into an
array of linked lists. In this way, all records with key value i can be placed in bin
B[i]. A second extension allows for a key range greater than n. For example,
a set of n records might have keys in the range 1 to 2n. The only requirement is
that each possible key value have a corresponding bin in B. The extended Binsort
algorithm is shown in Figure 7.16.

This version of Binsort can sort any collection of records whose key values fall
in the range from 0 to MaxKeyValue−1. The total work required is simply that
needed to place each record into the appropriate bin and then take all of the records
out of the bins. Thus, we need to process each record twice, for Θ(n) work.

Unfortunately, there is a crucial oversight in this analysis. Binsort must also
look at each of the bins to see if it contains a record. The algorithm must process
MaxKeyValue bins, regardless of how many actually hold records. If MaxKey-
Value is small compared to n, then this is not a great expense. Suppose that
MaxKeyValue = n2. In this case, the total amount of work done will be Θ(n +
n2) = Θ(n2). This results in a poor sorting algorithm, and the algorithm becomes
even worse as the disparity between n and MaxKeyValue increases. In addition,
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Figure 7.17 An example of Radix Sort for twelve two-digit numbers in base ten.
Two passes are required to sort the list.

a large key range requires an unacceptably large array B. Thus, even the extended
Binsort is useful only for a limited key range.

A further generalization to Binsort yields a bucket sort. Each bin is associated
with not just one key, but rather a range of key values. A bucket sort assigns records
to bins and then relies on some other sorting technique to sort the records within
each bin. The hope is that the relatively inexpensive bucketing process will put
only a small number of records in each bin, and that a “cleanup sort” within the
bins will then be relatively cheap.

There is a way to keep the number of bins and the related processing small
while allowing the cleanup sort to be based on Binsort. Consider a sequence of
records with keys in the range 0 to 99. If we have ten bins available, we can first
assign records to bins by taking their key value modulo 10. Thus, every key will
be assigned to the bin matching its rightmost decimal digit. We can then take these
records from the bins in order and reassign them to the bins on the basis of their
leftmost (10’s place) digit (define values in the range 0 to 9 to have a leftmost digit
of 0). In other words, assign the ith record from array A to a bin using the formula
A[i]/10. If we now gather the values from the bins in order, the result is a sorted
list. Figure 7.17 illustrates this process.
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static void radix(Integer[] A, Integer[] B,
int k, int r, int[] count) {

// Count[i] stores number of records in bin[i]
int i, j, rtok;

for (i=0, rtok=1; i<k; i++, rtok*=r) { // For k digits
for (j=0; j<r; j++) count[j] = 0; // Initialize count

// Count the number of records for each bin on this pass
for (j=0; j<A.length; j++) count[(A[j]/rtok)%r]++;

// count[j] will be index in B for last slot of bin j.
for (j=1; j<r; j++) count[j] = count[j-1] + count[j];

// Put records into bins, working from bottom of bin
// Since bins fill from bottom, j counts downwards
for (j=A.length-1; j>=0; j--)

B[--count[(A[j]/rtok)%r]] = A[j];

for (j=0; j<A.length; j++) A[j] = B[j]; // Copy B back
}

}

Figure 7.18 The Radix Sort algorithm.

In this example, we have r = 10 bins and n = 12 keys in the range 0 to r2− 1.
The total computation is Θ(n), because we look at each record and each bin a
constant number of times. This is a great improvement over the simple Binsort
where the number of bins must be as large as the key range. Note that the example
uses r = 10 so as to make the bin computations easy to visualize: Records were
placed into bins based on the value of first the rightmost and then the leftmost
decimal digits. Any number of bins would have worked. This is an example of a
Radix Sort, so called because the bin computations are based on the radix or the
base of the key values. This sorting algorithm can be extended to any number of
keys in any key range. We simply assign records to bins based on the keys’ digit
values working from the rightmost digit to the leftmost. If there are k digits, then
this requires that we assign keys to bins k times.

As with Mergesort, an efficient implementation of Radix Sort is somewhat dif-
ficult to achieve. In particular, we would prefer to sort an array of values and avoid
processing linked lists. If we know how many values will be in each bin, then an
auxiliary array of size r can be used to hold the bins. For example, if during the
first pass the 0 bin will receive three records and the 1 bin will receive five records,
then we could simply reserve the first three array positions for the 0 bin and the
next five array positions for the 1 bin. Exactly this approach is taken by the Java
implementation of Figure 7.18. At the end of each pass, the records are copied back
to the original array.
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The first inner for loop initializes array cnt. The second loop counts the
number of records to be assigned to each bin. The third loop sets the values in cnt
to their proper indices within array B. Note that the index stored in cnt[j] is the
last index for bin j; bins are filled from high index to low index. The fourth loop
assigns the records to the bins (within array B). The final loop simply copies the
records back to array A to be ready for the next pass. Variable rtoi stores ri for
use in bin computation on the i’th iteration. Figure 7.19 shows how this algorithm
processes the input shown in Figure 7.17.

This algorithm requires k passes over the list of n numbers in base r, with
Θ(n + r) work done at each pass. Thus the total work is Θ(nk + rk). What is
this in terms of n? Because r is the size of the base, it might be rather small.
One could use base 2 or 10. Base 26 would be appropriate for sorting character
strings. For now, we will treat r as a constant value and ignore it for the purpose of
determining asymptotic complexity. Variable k is related to the key range: It is the
maximum number of digits that a key may have in base r. In some applications we
can determine k to be of limited size and so might wish to consider it a constant.
In this case, Radix Sort is Θ(n) in the best, average, and worst cases, making it the
sort with best asymptotic complexity that we have studied.

Is it a reasonable assumption to treat k as a constant? Or is there some rela-
tionship between k and n? If the key range is limited and duplicate key values are
common, there might be no relationship between k and n. To make this distinction
clear, use N to denote the number of distinct key values used by the n records.
Thus, N ≤ n. Because it takes a minimum of logrN base r digits to represent N
distinct key values, we know that k ≥ logrN .

Now, consider the situation in which no keys are duplicated. If there are n
unique keys (n = N ), then it requires n distinct code values to represent them.
Thus, k ≥ logr n. Because it requires at least Ω(log n) digits (within a constant
factor) to distinguish between the n distinct keys, k is in Ω(log n). This yields
an asymptotic complexity of Ω(n log n) for Radix Sort to process n distinct key
values.

It is possible that the key range is much larger; logr n bits is merely the best
case possible for n distinct values. Thus, the logr n estimate for k could be overly
optimistic. The moral of this analysis is that, for the general case of n distinct key
values, Radix Sort is at best a Ω(n log n) sorting algorithm.

Radix Sort can be much improved by making base r be as large as possible.
Consider the case of an integer key value. Set r = 2i for some i. In other words,
the value of r is related to the number of bits of the key processed on each pass.
Each time the number of bits is doubled, the number of passes is cut in half. When
processing an integer key value, setting r = 256 allows the key to be processed one
byte at a time. Processing a 32-bit key requires only four passes. It is not unrea-
sonable on most computers to use r = 216 = 64K, resulting in only two passes for
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0 5 6 9871 2 3 4 10 11

0 5 6 9871 2 3 4 10 11

First pass values for Count.

Count array:
Index positions for Array B.

rtoi = 1.

Second pass values for Count.
rtoi = 10.

Count array:
Index positions for Array B.

End of Pass 2: Array A.

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Initial Input: Array A

91 23 84 25 27 97 17 67 2872

91 1 97 17 23 84 28 72 5 67 2527

11 12 122 3 4 5 7 70

1 5

1 2 3 4 5 6 7 8 90

1210

0 1 2 3 4 5 6 7 8 9

17 23 25 27 28 67 72 84 91 9751

2 1 1 1 2 0 4 1 00

2111041 002

987 7773

End of Pass 1: Array A.

2

Figure 7.19 An example showing function radix applied to the input of Fig-
ure 7.17. Row 1 shows the initial values within the input array. Row 2 shows the
values for array cnt after counting the number of records for each bin. Row 3
shows the index values stored in array cnt. For example, cnt[0] is 0, indicat-
ing no input values are in bin 0. Cnt[1] is 2, indicating that array B positions 0
and 1 will hold the values for bin 1. Cnt[2] is 3, indicating that array B position
2 will hold the (single) value for bin 2. Cnt[7] is 11, indicating that array B
positions 7 through 10 will hold the four values for bin 7. Row 4 shows the results
of the first pass of the Radix Sort. Rows 5 through 7 show the equivalent steps for
the second pass.
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a 32-bit key. Of course, this requires a cnt array of size 64K. Performance will
be good only if the number of records is close to 64K or greater. In other words,
the number of records must be large compared to the key size for Radix Sort to be
efficient. In many sorting applications, Radix Sort can be tuned in this way to give
good performance.

Radix Sort depends on the ability to make a fixed number of multiway choices
based on a digit value, as well as random access to the bins. Thus, Radix Sort
might be difficult to implement for certain key types. For example, if the keys
are real numbers or arbitrary length strings, then some care will be necessary in
implementation. In particular, Radix Sort will need to be careful about deciding
when the “last digit” has been found to distinguish among real numbers, or the last
character in variable length strings. Implementing the concept of Radix Sort with
the trie data structure (Section 13.1) is most appropriate for these situations.

At this point, the perceptive reader might begin to question our earlier assump-
tion that key comparison takes constant time. If the keys are “normal integer”
values stored in, say, an integer variable, what is the size of this variable compared
to n? In fact, it is almost certain that 32 (the number of bits in a standard int vari-
able) is greater than log n for any practical computation. In this sense, comparison
of two long integers requires Ω(log n) work.

Computers normally do arithmetic in units of a particular size, such as a 32-bit
word. Regardless of the size of the variables, comparisons use this native word
size and require a constant amount of time since the comparison is implemented in
hardware. In practice, comparisons of two 32-bit values take constant time, even
though 32 is much greater than log n. To some extent the truth of the proposition
that there are constant time operations (such as integer comparison) is in the eye
of the beholder. At the gate level of computer architecture, individual bits are
compared. However, constant time comparison for integers is true in practice on
most computers (they require a fixed number of machine instructions), and we rely
on such assumptions as the basis for our analyses. In contrast, Radix Sort must do
several arithmetic calculations on key values (each requiring constant time), where
the number of such calculations is proportional to the key length. Thus, Radix Sort
truly does Ω(n log n) work to process n distinct key values.

7.8 An Empirical Comparison of Sorting Algorithms

Which sorting algorithm is fastest? Asymptotic complexity analysis lets us distin-
guish between Θ(n2) and Θ(n log n) algorithms, but it does not help distinguish
between algorithms with the same asymptotic complexity. Nor does asymptotic
analysis say anything about which algorithm is best for sorting small lists. For
answers to these questions, we can turn to empirical testing.
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Sort 10 100 1K 10K 100K 1M Up Down
Insertion .00023 .007 0.66 64.98 7381.0 674420 0.04 129.05
Bubble .00035 .020 2.25 277.94 27691.0 2820680 70.64 108.69
Selection .00039 .012 0.69 72.47 7356.0 780000 69.76 69.58
Shell .00034 .008 0.14 1.99 30.2 554 0.44 0.79
Shell/O .00034 .008 0.12 1.91 29.0 530 0.36 0.64
Merge .00050 .010 0.12 1.61 19.3 219 0.83 0.79
Merge/O .00024 .007 0.10 1.31 17.2 197 0.47 0.66
Quick .00048 .008 0.11 1.37 15.7 162 0.37 0.40
Quick/O .00031 .006 0.09 1.14 13.6 143 0.32 0.36
Heap .00050 .011 0.16 2.08 26.7 391 1.57 1.56
Heap/O .00033 .007 0.11 1.61 20.8 334 1.01 1.04
Radix/4 .00838 .081 0.79 7.99 79.9 808 7.97 7.97
Radix/8 .00799 .044 0.40 3.99 40.0 404 4.00 3.99

Figure 7.20 Empirical comparison of sorting algorithms run on a 3.4-GHz Intel
Pentium 4 CPU running Linux. Shellsort, Quicksort, Mergesort, and Heapsort
each are shown with regular and optimized versions. Radix Sort is shown for 4-
and 8-bit-per-pass versions. All times shown are milliseconds.

Figure 7.20 shows timing results for actual implementations of the sorting algo-
rithms presented in this chapter. The algorithms compared include Insertion Sort,
Bubble Sort, Selection Sort, Shellsort, Quicksort, Mergesort, Heapsort and Radix
Sort. Shellsort shows both the basic version from Section 7.3 and another with
increments based on division by three. Mergesort shows both the basic implemen-
tation from Section 7.4 and the optimized version (including calls to Insertion Sort
for lists of length below nine). For Quicksort, two versions are compared: the basic
implementation from Section 7.5 and an optimized version that does not partition
sublists below length nine (with Insertion Sort performed at the end). The first
Heapsort version uses the class definitions from Section 5.5. The second version
removes all the class definitions and operates directly on the array using inlined
code for all access functions.

Except for the rightmost columns, the input to each algorithm is a random array
of integers. This affects the timing for some of the sorting algorithms. For exam-
ple, Selection Sort is not being used to best advantage because the record size is
small, so it does not get the best possible showing. The Radix Sort implementation
certainly takes advantage of this key range in that it does not look at more digits
than necessary. On the other hand, it was not optimized to use bit shifting instead
of division, even though the bases used would permit this.

The various sorting algorithms are shown for lists of sizes 10, 100, 1000,
10,000, 100,000, and 1,000,000. The final two columns of each table show the
performance for the algorithms on inputs of size 10,000 where the numbers are
in ascending (sorted) and descending (reverse sorted) order, respectively. These
columns demonstrate best-case performance for some algorithms and worst-case
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performance for others. They also show that for some algorithms, the order of
input has little effect.

These figures show a number of interesting results. As expected, the O(n2)
sorts are quite poor performers for large arrays. Insertion Sort is by far the best of
this group, unless the array is already reverse sorted. Shellsort is clearly superior
to any of these O(n2) sorts for lists of even 100 elements. Optimized Quicksort is
clearly the best overall algorithm for all but lists of 10 elements. Even for small
arrays, optimized Quicksort performs well because it does one partition step be-
fore calling Insertion Sort. Compared to the other O(n log n) sorts, unoptimized
Heapsort is quite slow due to the overhead of the class structure. When all of this
is stripped away and the algorithm is implemented to manipulate an array directly,
it is still somewhat slower than mergesort. In general, optimizing the various algo-
rithms makes a noticeable improvement for larger array sizes.

Overall, Radix Sort is a surprisingly poor performer. If the code had been tuned
to use bit shifting of the key value, it would likely improve substantially; but this
would seriously limit the range of element types that the sort could support.

7.9 Lower Bounds for Sorting

This book contains many analyses for algorithms. These analyses generally define
the upper and lower bounds for algorithms in their worst and average cases. For
many of the algorithms presented so far, analysis has been easy. This section con-
siders a more difficult task — an analysis for the cost of a problem as opposed to an
algorithm. The upper bound for a problem can be defined as the asymptotic cost of
the fastest known algorithm. The lower bound defines the best possible efficiency
for any algorithm that solves the problem, including algorithms not yet invented.
Once the upper and lower bounds for the problem meet, we know that no future
algorithm can possibly be (asymptotically) more efficient.

A simple estimate for a problem’s lower bound can be obtained by measuring
the size of the input that must be read and the output that must be written. Certainly
no algorithm can be more efficient than the problem’s I/O time. From this we see
that the sorting problem cannot be solved by any algorithm in less than Ω(n) time
because it takes at least n steps to read and write the n values to be sorted. Alter-
natively, any sorting algorithm must at least look at every input vale to recognize
whether the input values are in sort order. So, based on our current knowledge of
sorting algorithms and the size of the input, we know that the problem of sorting is
bounded by Ω(n) and O(n log n).

Computer scientists have spent much time devising efficient general-purpose
sorting algorithms, but no one has ever found one that is faster than O(n log n) in
the worst or average cases. Should we keep searching for a faster sorting algorithm?
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Or can we prove that there is no faster sorting algorithm by finding a tighter lower
bound?

This section presents one of the most important and most useful proofs in com-
puter science: No sorting algorithm based on key comparisons can possibly be
faster than Ω(n log n) in the worst case. This proof is important for three reasons.
First, knowing that widely used sorting algorithms are asymptotically optimal is re-
assuring. In particular, it means that you need not bang your head against the wall
searching for an O(n) sorting algorithm (or at least not one in any way based on key
comparisons). Second, this proof is one of the few non-trivial lower-bounds proofs
that we have for any problem; that is, this proof provides one of the relatively few
instances where our lower bound is tighter than simply measuring the size of the
input and output. As such, it provides a useful model for proving lower bounds on
other problems. Finally, knowing a lower bound for sorting gives us a lower bound
in turn for other problems whose solution could be used as the basis for a sorting
algorithm. The process of deriving asymptotic bounds for one problem from the
asymptotic bounds of another is called a reduction, a concept further explored in
Chapter 17.

Except for the Radix Sort and Binsort, all of the sorting algorithms presented
in this chapter make decisions based on the direct comparison of two key values.
For example, Insertion Sort sequentially compares the value to be inserted into the
sorted list until a comparison against the next value in the list fails. In contrast,
Radix Sort has no direct comparison of key values. All decisions are based on the
value of specific digits in the key value, so it is possible to take approaches to sorting
that do not involve key comparisons. Of course, Radix Sort in the end does not
provide a more efficient sorting algorithm than comparison-based sorting. Thus,
empirical evidence suggests that comparison-based sorting is a good approach.3

The proof that any comparison sort requires Ω(n log n) comparisons in the
worst case is structured as follows. First, comparison-based decisions can be mod-
eled as the branches in a tree. This means that any sorting algorithm based on com-
parisons between records can be viewed as a binary tree whose nodes correspond to
the comparisons, and whose branches correspond to the possible outcomes. Next,
the minimum number of leaves in the resulting tree is shown to be the factorial of
n. Finally, the minimum depth of a tree with n! leaves is shown to be in Ω(n log n).

Before presenting the proof of an Ω(n log n) lower bound for sorting, we first
must define the concept of a decision tree. A decision tree is a binary tree that can
model the processing for any algorithm that makes binary decisions. Each (binary)
decision is represented by a branch in the tree. For the purpose of modeling sorting
algorithms, we count all comparisons of key values as decisions. If two keys are

3The truth is stronger than this statement implies. In reality, Radix Sort relies on comparisons as
well and so can be modeled by the technique used in this section. The result is an Ω(n logn) bound
in the general case even for algorithms that look like Radix Sort.
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Figure 7.21 Decision tree for Insertion Sort when processing three values la-
beled X, Y, and Z, initially stored at positions 0, 1, and 2, respectively, in input
array A.

compared and the first is less than the second, then this is modeled as a left branch
in the decision tree. In the case where the first value is greater than the second, the
algorithm takes the right branch.

Figure 7.21 shows the decision tree that models Insertion Sort on three input
values. The first input value is labeled X, the second Y, and the third Z. They are
initially stored in positions 0, 1, and 2, respectively, of input array A. Consider the
possible outputs. Initially, we know nothing about the final positions of the three
values in the sorted output array. The correct output could be any permutation of
the input values. For three values, there are n! = 6 permutations. Thus, the root
node of the decision tree lists all six permutations that might be the eventual result
of the algorithm.

When n = 3, the first comparison made by Insertion Sort is between the sec-
ond item in the input array (Y) and the first item in the array (X). There are two
possibilities: Either the value of Y is less than that of X, or the value of Y is not
less than that of X. This decision is modeled by the first branch in the tree. If Y is
less than X, then the left branch should be taken and Y must appear before X in the
final output. Only three of the original six permutations have this property, so the
left child of the root lists the three permutations where Y appears before X: YXZ,
YZX, and ZYX. Likewise, if Y were not less than X, then the right branch would
be taken, and only the three permutations in which Y appears after X are possible
outcomes: XYZ, XZY, and ZXY. These are listed in the right child of the root.

Let us assume for the moment that Y is less than X and so the left branch is
taken. In this case, Insertion Sort swaps the two values. At this point the array
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stores YXZ. Thus, in Figure 7.21 the left child of the root shows YXZ above the
line. Next, the third value in the array is compared against the second (i.e., Z is
compared with X). Again, there are two possibilities. If Z is less than X, then these
items should be swapped (the left branch). If Z is not less than X, then Insertion
Sort is complete (the right branch).

Note that the right branch reaches a leaf node, and that this leaf node contains
only one permutation: YXZ. This means that only permutation YXZ can be the
outcome based on the results of the decisions taken to reach this node. In other
words, Insertion Sort has “found” the single permutation of the original input that
yields a sorted list. Likewise, if the second decision resulted in taking the left
branch, a third comparison, regardless of the outcome, yields nodes in the decision
tree with only single permutations. Again, Insertion Sort has “found” the correct
permutation that yields a sorted list.

Any sorting algorithm based on comparisons can be modeled by a decision tree
in this way, regardless of the size of the input. Thus, all sorting algorithms can
be viewed as algorithms to “find” the correct permutation of the input that yields
a sorted list. Each algorithm based on comparisons can be viewed as proceeding
by making branches in the tree based on the results of key comparisons, and each
algorithm can terminate once a node with a single permutation has been reached.

How is the worst-case cost of an algorithm expressed by the decision tree? The
decision tree shows the decisions made by an algorithm for all possible inputs of a
given size. Each path through the tree from the root to a leaf is one possible series
of decisions taken by the algorithm. The depth of the deepest node represents the
longest series of decisions required by the algorithm to reach an answer.

There are many comparison-based sorting algorithms, and each will be mod-
eled by a different decision tree. Some decision trees might be well-balanced, oth-
ers might be unbalanced. Some trees will have more nodes than others (those with
more nodes might be making “unnecessary” comparisons). In fact, a poor sorting
algorithm might have an arbitrarily large number of nodes in its decision tree, with
leaves of arbitrary depth. There is no limit to how slow the “worst” possible sort-
ing algorithm could be. However, we are interested here in knowing what the best
sorting algorithm could have as its minimum cost in the worst case. In other words,
we would like to know what is the smallest depth possible for the deepest node in
the tree for any sorting algorithm.

The smallest depth of the deepest node will depend on the number of nodes
in the tree. Clearly we would like to “push up” the nodes in the tree, but there is
limited room at the top. A tree of height 1 can only store one node (the root); the
tree of height 2 can store three nodes; the tree of height 3 can store seven nodes,
and so on.

Here are some important facts worth remembering:

• A binary tree of height n can store at most 2n − 1 nodes.
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• Equivalently, a tree with n nodes requires at least dlog(n+ 1)e levels.

What is the minimum number of nodes that must be in the decision tree for any
comparison-based sorting algorithm for n values? Because sorting algorithms are
in the business of determining which unique permutation of the input corresponds
to the sorted list, the decision tree for any sorting algorithm must contain at least
one leaf node for each possible permutation. There are n! permutations for a set of
n numbers (see Section 2.2).

Because there are at least n! nodes in the tree, we know that the tree must
have Ω(log n!) levels. From Stirling’s approximation (Section 2.2), we know log n!
is in Ω(n log n). The decision tree for any comparison-based sorting algorithm
must have nodes Ω(n log n) levels deep. Thus, in the worst case, any such sorting
algorithm must require Ω(n log n) comparisons.

Any sorting algorithm requiring Ω(n log n) comparisons in the worst case re-
quires Ω(n log n) running time in the worst case. Because any sorting algorithm
requires Ω(n log n) running time, the problem of sorting also requires Ω(n log n)
time. We already know of sorting algorithms with O(n log n) running time, so we
can conclude that the problem of sorting requires Θ(n log n) time. As a corol-
lary, we know that no comparison-based sorting algorithm can improve on existing
Θ(n log n) time sorting algorithms by more than a constant factor.

7.10 Further Reading

The definitive reference on sorting is Donald E. Knuth’s Sorting and Searching
[Knu98]. A wealth of details is covered there, including optimal sorts for small
size n and special purpose sorting networks. It is a thorough (although somewhat
dated) treatment on sorting. For an analysis of Quicksort and a thorough survey
on its optimizations, see Robert Sedgewick’s Quicksort [Sed80]. Sedgewick’s Al-
gorithms [Sed11] discusses most of the sorting algorithms described here and pays
special attention to efficient implementation. The optimized Mergesort version of
Section 7.4 comes from Sedgewick.

While Ω(n log n) is the theoretical lower bound in the worst case for sorting,
many times the input is sufficiently well ordered that certain algorithms can take
advantage of this fact to speed the sorting process. A simple example is Insertion
Sort’s best-case running time. Sorting algorithms whose running time is based on
the amount of disorder in the input are called adaptive. For more information on
adaptive sorting algorithms, see “A Survey of Adaptive Sorting Algorithms” by
Estivill-Castro and Wood [ECW92].

7.11 Exercises

7.1 Using induction, prove that Insertion Sort will always produce a sorted array.
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7.2 Write an Insertion Sort algorithm for integer key values. However, here’s
the catch: The input is a stack (not an array), and the only variables that
your algorithm may use are a fixed number of integers and a fixed number of
stacks. The algorithm should return a stack containing the records in sorted
order (with the least value being at the top of the stack). Your algorithm
should be Θ(n2) in the worst case.

7.3 The Bubble Sort implementation has the following inner for loop:

for (int j=n-1; j>i; j--)

Consider the effect of replacing this with the following statement:

for (int j=n-1; j>0; j--)

Would the new implementation work correctly? Would the change affect the
asymptotic complexity of the algorithm? How would the change affect the
running time of the algorithm?

7.4 When implementing Insertion Sort, a binary search could be used to locate
the position within the first i − 1 elements of the array into which element
i should be inserted. How would this affect the number of comparisons re-
quired? How would using such a binary search affect the asymptotic running
time for Insertion Sort?

7.5 Figure 7.5 shows the best-case number of swaps for Selection Sort as Θ(n).
This is because the algorithm does not check to see if the ith record is already
in the ith position; that is, it might perform unnecessary swaps.

(a) Modify the algorithm so that it does not make unnecessary swaps.
(b) What is your prediction regarding whether this modification actually

improves the running time?
(c) Write two programs to compare the actual running times of the origi-

nal Selection Sort and the modified algorithm. Which one is actually
faster?

7.6 Recall that a sorting algorithm is said to be stable if the original ordering for
duplicate keys is preserved. Of the sorting algorithms Insertion Sort, Bub-
ble Sort, Selection Sort, Shellsort, Mergesort, Quicksort, Heapsort, Binsort,
and Radix Sort, which of these are stable, and which are not? For each one,
describe either why it is or is not stable. If a minor change to the implemen-
tation would make it stable, describe the change.

7.7 Recall that a sorting algorithm is said to be stable if the original ordering for
duplicate keys is preserved. We can make any algorithm stable if we alter
the input keys so that (potentially) duplicate key values are made unique in
a way that the first occurrence of the original duplicate value is less than the
second occurrence, which in turn is less than the third, and so on. In the worst
case, it is possible that all n input records have the same key value. Give an
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algorithm to modify the key values such that every modified key value is
unique, the resulting key values give the same sort order as the original keys,
the result is stable (in that the duplicate original key values remain in their
original order), and the process of altering the keys is done in linear time
using only a constant amount of additional space.

7.8 The discussion of Quicksort in Section 7.5 described using a stack instead of
recursion to reduce the number of function calls made.

(a) How deep can the stack get in the worst case?
(b) Quicksort makes two recursive calls. The algorithm could be changed

to make these two calls in a specific order. In what order should the
two calls be made, and how does this affect how deep the stack can
become?

7.9 Give a permutation for the values 0 through 7 that will cause Quicksort (as
implemented in Section 7.5) to have its worst case behavior.

7.10 Assume L is an array, L.length() returns the number of records in the
array, and qsort(L, i, j) sorts the records of L from i to j (leaving
the records sorted in L) using the Quicksort algorithm. What is the average-
case time complexity for each of the following code fragments?

(a) for (i=0; i<L.length; i++)
qsort(L, 0, i);

(b) for (i=0; i<L.length; i++)
qsort(L, 0, L.length-1);

7.11 Modify Quicksort to find the smallest k values in an array of records. Your
output should be the array modified so that the k smallest values are sorted
in the first k positions of the array. Your algorithm should do the minimum
amount of work necessary, that is, no more of the array than necessary should
be sorted.

7.12 Modify Quicksort to sort a sequence of variable-length strings stored one
after the other in a character array, with a second array (storing pointers to
strings) used to index the strings. Your function should modify the index
array so that the first pointer points to the beginning of the lowest valued
string, and so on.

7.13 Graph f1(n) = n log n, f2(n) = n1.5, and f3(n) = n2 in the range 1 ≤ n ≤
1000 to visually compare their growth rates. Typically, the constant factor
in the running-time expression for an implementation of Insertion Sort will
be less than the constant factors for Shellsort or Quicksort. How many times
greater can the constant factor be for Shellsort to be faster than Insertion Sort
when n = 1000? How many times greater can the constant factor be for
Quicksort to be faster than Insertion Sort when n = 1000?
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7.14 Imagine that there exists an algorithm SPLITk that can split a list L of n
elements into k sublists, each containing one or more elements, such that
sublist i contains only elements whose values are less than all elements in
sublist j for i < j <= k. If n < k, then k−n sublists are empty, and the rest
are of length 1. Assume that SPLITk has time complexity O(length of L).
Furthermore, assume that the k lists can be concatenated again in constant
time. Consider the following algorithm:

List SORTk(List L) {
List sub[k]; // To hold the sublists
if (L.length() > 1) {

SPLITk(L, sub); // SPLITk places sublists into sub
for (i=0; i<k; i++)

sub[i] = SORTk(sub[i]); // Sort each sublist
L = concatenation of k sublists in sub;
return L;

}
}

(a) What is the worst-case asymptotic running time for SORTk? Why?
(b) What is the average-case asymptotic running time of SORTk? Why?

7.15 Here is a variation on sorting. The problem is to sort a collection of n nuts
and n bolts by size. It is assumed that for each bolt in the collection, there
is a corresponding nut of the same size, but initially we do not know which
nut goes with which bolt. The differences in size between two nuts or two
bolts can be too small to see by eye, so you cannot rely on comparing the
sizes of two nuts or two bolts directly. Instead, you can only compare the
sizes of a nut and a bolt by attempting to screw one into the other (assume
this comparison to be a constant time operation). This operation tells you
that either the nut is bigger than the bolt, the bolt is bigger than the nut, or
they are the same size. What is the minimum number of comparisons needed
to sort the nuts and bolts in the worst case?

7.16 (a) Devise an algorithm to sort three numbers. It should make as few com-
parisons as possible. How many comparisons and swaps are required
in the best, worst, and average cases?

(b) Devise an algorithm to sort five numbers. It should make as few com-
parisons as possible. How many comparisons and swaps are required
in the best, worst, and average cases?

(c) Devise an algorithm to sort eight numbers. It should make as few com-
parisons as possible. How many comparisons and swaps are required
in the best, worst, and average cases?

7.17 Devise an efficient algorithm to sort a set of numbers with values in the range
0 to 30,000. There are no duplicates. Keep memory requirements to a mini-
mum.
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7.18 Which of the following operations are best implemented by first sorting the
list of numbers? For each operation, briefly describe an algorithm to imple-
ment it, and state the algorithm’s asymptotic complexity.

(a) Find the minimum value.
(b) Find the maximum value.
(c) Compute the arithmetic mean.
(d) Find the median (i.e., the middle value).
(e) Find the mode (i.e., the value that appears the most times).

7.19 Consider a recursive Mergesort implementation that calls Insertion Sort on
sublists smaller than some threshold. If there are n calls to Mergesort, how
many calls will there be to Insertion Sort? Why?

7.20 Implement Mergesort for the case where the input is a linked list.
7.21 Counting sort (assuming the input key values are integers in the range 0 to

m− 1) works by counting the number of records with each key value in the
first pass, and then uses this information to place the records in order in a
second pass. Write an implementation of counting sort (see the implementa-
tion of radix sort for some ideas). What can we say about the relative values
of m and n for this to be effective? If m < n, what is the running time of
this algorithm?

7.22 Use an argument similar to that given in Section 7.9 to prove that log n is a
worst-case lower bound for the problem of searching for a given value in a
sorted array containing n elements.

7.23 A simpler way to do the Quicksort partition step is to set index split
to the position of the first value greater than the pivot. Then from posi-
tion split+1 have another index curr move to the right until it finds a
value less than a pivot. Swap the values at split and next, and incre-
ment split. Continue in this way, swapping the smaller values to the left
side. When curr reaches the end of the subarray, split will be at the split
point between the two partitions. Unfortunately, this approach requires more
swaps than does the version presented in Section 7.5, resulting in a slower
implementation. Give an example and explain why.

7.12 Projects

7.1 One possible improvement for Bubble Sort would be to add a flag variable
and a test that determines if an exchange was made during the current iter-
ation. If no exchange was made, then the list is sorted and so the algorithm
can stop early. This makes the best case performance become O(n) (because
if the list is already sorted, then no iterations will take place on the first pass,
and the sort will stop right there).
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Modify the Bubble Sort implementation to add this flag and test. Compare
the modified implementation on a range of inputs to determine if it does or
does not improve performance in practice.

7.2 Double Insertion Sort is a variation on Insertion Sort that works from the
middle of the array out. At each iteration, some middle portion of the array
is sorted. On the next iteration, take the two adjacent elements to the sorted
portion of the array. If they are out of order with respect to each other, than
swap them. Now, push the left element toward the right in the array so long
as it is greater than the element to its right. And push the right element
toward the left in the array so long as it is less than the element to its left.
The algorithm begins by processing the middle two elements of the array if
the array is even. If the array is odd, then skip processing the middle item
and begin with processing the elements to its immediate left and right.
First, explain what the cost of Double Insertion Sort will be in comparison to
standard Insertion sort, and why. (Note that the two elements being processed
in the current iteration, once initially swapped to be sorted with with respect
to each other, cannot cross as they are pushed into sorted position.) Then, im-
plement Double Insertion Sort, being careful to properly handle both when
the array is odd and when it is even. Compare its running time in practice
against standard Insertion Sort. Finally, explain how this speedup might af-
fect the threshold level and running time for a Quicksort implementation.

7.3 Perform a study of Shellsort, using different increments. Compare the ver-
sion shown in Section 7.3, where each increment is half the previous one,
with others. In particular, try implementing “division by 3” where the incre-
ments on a list of length nwill be n/3, n/9, etc. Do other increment schemes
work as well?

7.4 The implementation for Mergesort given in Section 7.4 takes an array as in-
put and sorts that array. At the beginning of Section 7.4 there is a simple
pseudocode implementation for sorting a linked list using Mergesort. Im-
plement both a linked list-based version of Mergesort and the array-based
version of Mergesort, and compare their running times.

7.5 Starting with the Java code for Quicksort given in this chapter, write a series
of Quicksort implementations to test the following optimizations on a wide
range of input data sizes. Try these optimizations in various combinations to
try and develop the fastest possible Quicksort implementation that you can.

(a) Look at more values when selecting a pivot.
(b) Do not make a recursive call to qsort when the list size falls below a

given threshold, and use Insertion Sort to complete the sorting process.
Test various values for the threshold size.

(c) Eliminate recursion by using a stack and inline functions.



Sec. 7.12 Projects 263

7.6 It has been proposed that Heapsort can be optimized by altering the heap’s
siftdown function. Call the value being sifted down X . Siftdown does two
comparisons per level: First the children ofX are compared, then the winner
is compared toX . IfX is too small, it is swapped with its larger child and the
process repeated. The proposed optimization dispenses with the test against
X . Instead, the larger child automatically replaces X , until X reaches the
bottom level of the heap. At this point, X might be too large to remain in
that position. This is corrected by repeatedly comparing X with its parent
and swapping as necessary to “bubble” it up to its proper level. The claim
is that this process will save a number of comparisons because most nodes
when sifted down end up near the bottom of the tree anyway. Implement both
versions of siftdown, and do an empirical study to compare their running
times.

7.7 Radix Sort is typically implemented to support only a radix that is a power
of two. This allows for a direct conversion from the radix to some number
of bits in an integer key value. For example, if the radix is 16, then a 32-bit
key will be processed in 8 steps of 4 bits each. This can lead to a more effi-
cient implementation because bit shifting can replace the division operations
shown in the implementation of Section 7.7. Re-implement the Radix Sort
code given in Section 7.7 to use bit shifting in place of division. Compare
the running time of the old and new Radix Sort implementations.

7.8 Write your own collection of sorting programs to implement the algorithms
described in this chapter, and compare their running times. Be sure to im-
plement optimized versions, trying to make each program as fast as possible.
Do you get the same relative timings as shown in Figure 7.20? If not, why do
you think this happened? How do your results compare with those of your
classmates? What does this say about the difficulty of doing empirical timing
studies?


